

Energy Harvesting (EH) Energy Needed / Energy Available

vision, Ins e-mail: Daniel.Zabek@itc.pw.edu.pl Rational use of Energy Division, Institute of Heat Engineering, Warsaw University of Technology, PL.

Dr. Daniel Ząpek

07. Nov. 2017

raasons

Energy Available

[1] Somov and Giaffreda (2015) Powering IoT Devices: Technologies and Opportunities.

Energy Harvesting (EH)

<u>Wikipedia "definition"</u>: Energy harvesting is **the process by which energy is derived from external sources**, **captured**, **and stored** for small, wireless autonomous devices [2].

ISA definition [3]:

- No wires.
- No batteries.
- No maintenance.

ISA standards for wireless sensor nodes based on three cases using the license free 2.4 GHz radio IEEE 802.15.4 standard:

Case 1: 2500 μ W = "D" cell for 4 months. **Case 2**: 1000 μ W = "C" cell for 3 years. **Case 3**: 300 μ W = "AA" cell for 3 years.

Small scale distributed energy generation.

[2] www.wikipedia.org/wiki/Energy_harvesting. [3] ISA InTech Magazine (2011) Special Section: Energy harvesting.

Example 1: "Crystal Radio" – Nearly Los Art

- Wireless power transmission using RF signals.
- Radio only needs 50 *pW* **without** an external power source.
- Over hundreds of km range.
- Works since 1894!

Example 2: Vibration EH from Trains

Train vibrations:

- Wheels.
- Axle bearings.
- Gearboxes.
- Traction motors.
- Tracks.

[5]

Example 2: Vibration EH from Trains

Continuous wireless machine health monitoring under harsh environmental conditions with a Mean –Time –To – Failure of 440 years and data on:

- Bearing failure analyses of correct wheel and correct fault.
- Track conditions.
- 1.8 million sets data/day e.g.: vibration, temperature and oil analysis.
- Wireless data transmission.

Example 3: Thermal EH in Power Transformers

Heat in low voltage power distribution:

- High current bus ways.
- Unbalanced loads.
- Ambient heat sink.

Example 3: Thermal EH in Power Transformers

Continuous wireless machine health monitoring in central location and data on:

- Temperature and voltage at the bus.
- Low oil level in transformer.
- Loose or corroded joints.
- Ground conductor carrying current.
- Insulation failure.
- Mechanical binding/friction.

Two phase instability of the working fluid creates a powerful heat exchanger.

Chaotic mode with **random** temperature oscillation

Steady state mode with **symmetric** temperature oscillation

Under **constant thermal boundary condition** the OHP exhibits **rapid**and **high-temperature oscillations (but we know very little about it).**

Ferroelectric dipole moment is subjected to:

- Electric fields (ferroelectric hysteresis).
- Mechanical force (piezoelectric effect).
- Temperature (pyroelectric effect).

"Functional" material.

Potentially over 1000 undiscovered materials exhibiting ferroelectric behaviour.

Change in thermo-fluid properties between liquid and vapour phase.

[8] Zabek et al. (2016) A novel pyroelectric generator ... for waste heat recovery and thermal energy harvesting.

Functional Pyroelectric Oscillating Heat Pipes ΙΙ

Pyroelectric element:

Proof of concept.

[8] Zabek et al. (2016) A novel pyroelectric generator ... for waste heat recovery and thermal energy harvesting.

PMN-PT current chaotic

PMN-PT current symmetric

- Large changes in temperature.
- Fast changes in temperature.
- High pyroelectric current.

More energy recovered in chaotic operation than in symmetric operation.

Heat Transfer Enhancement for Pyroelectric EH

Graphene ink electrodes improve pyroelectric current and voltage by 4.3 times.

[10] Zabek et al. (2017) Graphene Ink Laminate Structures on PVDF for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.

Meshed Electrodes for Pyroelectric EH

ITC

Meshed electrodes improve pyroelectric current and voltage by 6 times.

[11] Zabek et *al*. (2015) Micropatterning of flexible and free standing PVDF films for enhanced pyroelectric energy transformation.

Overall heat transfer coefficient U and area A in a heat exchanger with set boundaries T_{LM} .

 T_{LM} = in waste heat recovery is usually constant.

$$UA = \frac{Q}{T_{LM}}$$

[12] Zabek et al. (2013) Optimization of waste heat utilization in oil field development employing a transcritical ORC for electricity generation.

- Temperature level is not necessarily a variable in EH and waste heat recovery.
- Various external and free energy source exits.
- Commercially viable Energy Harvesting (EH) applications are out there.
- Finding applications with strong benefits from wireless without batteries.
- The inconvenient truth: small scale and low temperature power conversion is not efficient.